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Abstract

In this paper, we consider an almost periodic discrete Lotka-Volterra mutualism model with delays. We first
obtain the permanence and global attractivity of the system. By means of an almost periodic functional hull
theory and constructing a suitable Lyapunov function, sufficient conditions are obtained for the existence of a
unique strictly positive almost periodic solution which is globally attractive. An example together with numerical

simulation indicates the feasibility of the main result.
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1 Introduction

In reference [1], Li had studied a discrete mutualism model with time delays:

_ 1(K) + a1 (F)za(k = 1o(F))
xl(k—l—l)—a:l(k:)exp{rl(k:)[ T+ 220 — 12 (1) —xl(k—al(k))}},
(
(

2 (k) + as(k)a1 (k — (k) (1.1)

z2(k+1) :azg(k)exp{rg(k)[ Y Ry —$2(k—02(k)):|},

where {r;(k)}, {K;(k)}, {oi(k)}, {m(k)} and {oy(k)}, with ¢ = 1,2, are positive w-periodic sequence, and
a; > K. By using the theory of coincidence degree theory, it is proved that system (1.1) has at least one
positive w-periodic solution.

Under the assumptions that r;, K;, oy, 7; and o;, with ¢ = 1,2, are non-negative sequence bounded above
and below by positive constants, and «; > K;, i = 1,2, Chen [2] obtained sufficient conditions that ensure
the permanence of the system (1.1). To the best of the author’s knowledge, though many works have been
done for the mutualism model with time delays [3-5], most of the works dealt with the continuous time model.
For more results about the existence of almost periodic solutions of a continuous time system, we can refer
to [6-9] and the references cited therein. To this day, still no scholars have considered discrete almost periodic
mutualism system with delays.

In this paper, we study the following discrete Lotka-Volterra mutualism model with delays and feedback
control

xa(n —11)
(n) +z2(n — 1)

z1(n+1) =z1(n)exp {al (n) = bi(n)z1(n —o1) + c1(n) a —er(n)ur(n — 51)},

xa2(n+1) = 29(n) exp {ag(n) —ba(n)ze(n — o2) 4+ ca(n) dQ(na)jl_'(_nz:(:)_ ~ —ea(n)us(n — 52)}, 12)

Auy(n) = —fi(n) + gr1(n)z1(n — n1),

Auz(n) = —fa(n) + g2(n)za(n —n2)
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where {a;(n)}, {bi(n)} and {c;(n)}(i = 1,2) are bounded nonnegative almost periodic sequences such that
0 < al <ai(n) <al, 0 < bl < bi(n) <Y, 0<c <c¢i(n) <cl
where i = 1,2, n € Z. For any bounded sequence f(n) defined on Z, f* = sup f(n), f' = inf f(n). Also 7;

nez nez
and o;(i = 1,2) are positive integers.

By the biological meaning, we will focus our discussion on the positive solutions of system (1.2). So it is
assumed that the initial conditions of system (1.2) are the form:

xz(e) = @Z(Q) > Oa 901(0) > Oa e N[_Ta 0] = {_T7 -7+ 17 s 70}7 T = maX{7'170'1,7'270'2}. (13)

With the stimulation from the works [10-18], the main purpose of this paper is to obtain a set of sufficient
conditions to ensure the existence of a unique globally attractive positive almost periodic solution of system
(1.2) with initial condition (1.3).

The remaining part of this paper is organized as follows: In Section 2, we will introduce some definitions
and several useful lemmas. In the next section, we establish the permanence of system (1.2). Sufficient
conditions for the global attractivity of system (1.2) are showed in Section 4. Then, in Section 5, we establish
sufficient conditions to ensure the existence of a unique strictly positive almost periodic solution, which is
globally attractive. The main result is illustrated by an example with a numerical simulation in the last
section.

2 Preliminaries

First, we give the definitions of the terminologies involved.

Definition 2.1( [19]) A sequence xz : Z — R is called an almost periodic sequence if the e-translation
set of x
Ele,zy={reZ:jz(n+71)—2z(n)|<eVneZ}

is a relatively dense set in Z for all I(¢) > 0; that is, for any given I(¢) > 0, there exists an integer I(¢) > 0

such that each interval of length I(¢) contains an integer 7 € E{e, z} with
|z(n+7)—2x(n)|<e, VneZ.

7 is called an e-translation number of x(n).

Definition 2.2( [20]) Let D be an open subset of R™, f : Z x D — R™. f(n,z) is said to be almost
periodic in n uniformly for z € D if for any € > 0 and any compact set S C D, there exists a positive integer
1 =1(g, S) such that any interval of length ! contains an integer 7 for which

|f(n+7,2) — f(n,2)| <e, V(n,z)€ZxS.

T is called an e-translation number of f(n,x).

Definition 2.3( [21]) The hull of f, denoted by H(f), is defined by
H(f)={g(n,x): klim f(n+ 7%, 2) = g(n,z) uniformly on Z x S},
—00

for some sequence {7}, where S is any compact set in D.

Definition 2.4 Suppose that X(n) = (z1(n),z2(n)) is any solution of system (1.1). X(n) is said to be a
strictly positive solution in Z if forn € Z and i = 1,2

0 < inf z;(n) < sup z;(n) < co.
nez nez
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Now, we state several lemmas which will be useful in proving our main result.

Lemma 2.1( [22]) {z(n)} is an almost periodic sequence if and only if for any integer sequence {k}}, there
exists a subsequence {k;} C {k}} such that the sequence {x(n + k;)} converges uniformly for all n € Z as

1 — oo. Furthermore, the limit sequence is also an almost periodic sequence.

Lemma 2.2( [2]) Assume that {z(n)} satisfies z(n) > 0 and
£(n+1) < o(n) expla(n) — b(n)z(n))}

for n € N, where a(n) and b(n) are non-negative sequences bounded above and below by positive constants.
Then 1
limsup z(n) < 5 exp(a” —1).

n—-+4oo

Lemma 2.3( [2]) Assume that {x(n)} satisfies
z(n+1) > xz(n) exp{a(n) — b(n)x(n)}, n > Ny,
limsup z(n) < z*
n——+o0o

and z(Ny) > 0, where a(n) and b(n) are non-negative sequences bounded above and below by positive constants
and Ny € N. Then

al al
liminf 2(n) > min {b" exp{a’ — b%z*}, }

n—-+oo bu

3 Permanence

In this section, we establish the permanence result for system (1.2).

Theorem 3.1 System (1.2) with initial condition (1.3) is permanent, that is, there exist positive constants
m; and M;(i = 1,2) which are independent of the solutions of system (1.2), such that for any positive solution
(z1(n),xz2(n)) of system (1.2), one has:

m; < liminf z;(n) < limsupz;(n) < M;, i=1,2.

n—-+00 n——+oo

Proof. Let (x1(n),z2(n)) be any positive solution of system (1.2) with initial condition (1.3). From the first
equation of system (1.2) it follows that

z1(n+1) < z1(n)exp {ai(n) + c1(n)} < z1(n)exp {af + cf }. (3.1)
By using (3.1), one could easily obtain that
z1(n—01) > z1(n)exp { — o1(af +cf)}. (3.2)
Substituting (3.2) into the first equation of system (1.2), it follows that
z1(n+1) <z1(n)exp {(ﬁf +cf — bl exp { — o1 (al + c’f)}:z:l(n)} (3.3)
Thus, as a direct corollary of Lemma 2.2, according to (3.3), one has
. 1 w
lirgilig z1(n) < E exp{(a} +c{)(oy + 1) — 1} & M. (3.4)

By using the second equation of system (1.2), similar to the analysis of (3.1)-(3.4), we can obatin

. 1 w_ u
limsup z2(n) < o exp{(ay +c)(oa + 1) — 1} & My. (3.5)

n—-+o00 2

Copyright © scitecpub.com, all right reserved.



World Open Journal of Advanced Mathematics
Vol. 3, No. 4, December 2016, pp. 1-14
Available online at http://scitecpub.com/Journals.php

For any small positive constant ¢ > 0, from (3.4) and (3.5) it follows that there exists a Ny > 0 such that
forall n > Ny and ¢ = 1,2,

xzi(n) < M; +e. (3.6)
For n > Ny + o1, from (3.6) and the first equation of system (1.2), we have
z1(n+1) > z1(n)exp {a1(n) — bi(n)z1(n — o1)} > 21(n) exp {a} — b (M1 +¢)}. (3.7)
Thus, by using (3.7) we obtain
z1(n—o1) < 21(n)exp { — oq[al — b (M + )]} (3.8)
Substituting (3.8) into the first equation of system (1.2), for n > Ny + o1, it follows that

x1(n+1) > z1(n)exp {all —biexp{—o1 [al — b (M, + 6)}}x1(n)} (3.9)

Thus, as a direct corollary of Lemma 2.3, according to (3.4) and (3.9), one has

limJirnfxl(n) > min{ A, Aa. }, (3.10)
n—-—+0oQ
where
a’ll l u
Are = pu EXP {o1]ay = bY (M1 +€)]},
1

A = Ay exp {all —bexp{ —o1[al — b} (M; + 6)]}M1}

Letting ¢ — 0, it follows that

1
liminf z;(n) > = min{A;, Ay} = m; > 0, (3.11)
n—-4o00 2
where
all l u
A = o EXP {al(al — blMl)},
1

As = Ajexp {all —bfexp{ — o1(al — bqul)}Ml}‘

Similar to the analysis of (3.7)-(3.11), by applying (3.6), from the second equation of system (1.2), we
also have that

1
lim inf zo(n) > 5 min{ By, Ba} = my > 0, (3.12)

n—-+oo

where
l
as

b

By = By exp {aé — by exp { — oa(ah — b%MQ)}MQ}.

B, oxp {o2(a5 — by Ma)},

Then, (3.4),(3.5) and (3.11),(3.12) show that system (1.2) is permanent. The proof is completed.
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4 Global attractivity

In this section, by constructing a non-negative Lyapunov-like functional, we will obtain sufficient condi-
tions for global attractivity of positive solutions of system (1.2) with initial condition (1.3). We first introduce

a definition and prove a lemma which will be useful to obtain our main result.

Definition 4.1 A solution (z1(n),x2(n)) of system (1.2) with initial condition (1.3) is said to be globally
attractive if for any other solution (x§(n),z3(n)) of system (1.2) with initial condition (1.3), we have

lim (z}(n)— z;(n)) =0,i=1,2.

n—4oo

Lemma 4.1 For any two positive solutions (z1(n),z2(n)) and (zf(n),z5(n)) of system (1.2) with initial

condition (1.3), we have

nmi(n—i_l):nmi(n)— i(n)|z;(n) —zf(n ci(n 1 1
1 zf(n+1) 1 zf(n) bi(n)lzi(n) i+ ein) 1—|—;v;f(n—7'z) 1—|—xj(n—7'i)]
n—1 § . (577_7)
+b;(n) {[Cvl(s) — 2 (s)]A;(s)[ai(s) — bi(s)xf (s — 0;) + ci(s )m]
F B0 [0) et~ ()~ O ) — i -l | ()

where
ri(s — 7i)

1—&—96;7(5—72»)]}’

i) = exp { o (6)ai(s) — o) = ) o) T

A;(s) = exp {0(s)[ai(s) — bi(s)a] (s — 03) + ci(s)

(1= () asls) — bils)at (s — o) + exls) 28— b (42

L+ai(s—m)
91(5)7901(8) € (071)7i #jalaj =1,2.

Proof. For i # j;i,5 = 1,2, we can have from(1.2)

In zi(n+1) I x;(n) I zi(n+1) In zf(n+1)
zi(n+1) 7 (n) zi(n) 7 (n)
= a;(n) — bi(n)zi(n — 07) +C(H)M _ {a (n) — bi(n)ar(n — o) + C(H)M
! ! ! ! St ai(n— 1) ’ ‘ ! L+ a%(n—m)
= ¢;i(n) [1 fg‘(;ﬂ” = iﬂi”(n”ﬂ} —bi(n)[zi(n — 07) — x}(n — 07)]
= ci(n) [1 + x*(ln —7) l+a(n— 7'2):| —bimlwi(n) — zi(n)]
+bi(n){[zi(n) — zi(n — 03)] = 7 (n) — 27 (n — 03)]},
that is
(n+1) zf(n+1) 1 B 1
In x;(n) In xf(n) +eiln )[1 + a3 (n—mn) 14+z;(n—m)
—bi(n)[zi(n) — 2} (n)] + bi(n){[zi(n) — zi(n — 03)] =[] (n) — 2} (n — 03)]} (4.3)
5
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Since
[zi(n ) —zi(n —03)] — [27(n) — i (n — 0y)]
Z zi(s+1) —xi(s)] — Z [zF (s + 1) — a7 (s)]
n—1
= {[zi(s +1) =27 (s + 1] = [wi(s) — 27 (s)]}, (4.4)
and

[zi(s +1) — 2 (s + 1)] = [i(s) — 27 (s)]

= z;(s) exp {ai(s) —bi(s)xi(s —oy) + CZ(S)M}

(s = i) — [zi(s) — zi (s
b= o) - o)

l+ai(s—m

— 1z} (s) exp {ai(s) —bi(s)x; (s —0i) +¢ci(s)

= [zi(s) — CUZ-‘(S)]{ exp [a;(s) — bi(s)} (s — 03) + cz*(S)Ij(sn))] - 1}

l+ai(s—m

+ xz(s){ exp [ai(s) — bi(s)zi(s — o3) + cz(s)%

—exp [a;i(s) — bi(s)z} (s — 0;) + 01(8)1?;:)71)} }

Using the Mean Value Theorem, we get
[zi(s +1) =27 (s +1)] = [wi(s) — 27 (s)]

= 14(5) = A9 ai(5) — Bl (5 — ) + (o)
1 —
l+ai(s—m) Ll4+azi(s—m)

here A;(s), B;(s) are defined by (4.2). Then from (4.3)-(4.5), we can easily obtain (4.1). The proof is completed.

+ x;(s)B;(s) {cl(s)[ ] —bi(8)[xi(s —0y) —xi (s — 0y)]|, (4.5)

Theorem 4.1 Assume that in system (1.2) with initial condition (1.3), there exist positive constants f1, o
and 1 > 0 such that

Bikij — BiF; >m, 4,5 =1,2,5#1i (4.6)
where
E;; = min{b}, M — b} — o, M;(bY)? By — o;bt A¥(a¥ + b M; + ¢t M;);
Fy = 4 o, MbBYCE, (4.7)

Then for any two positive solutions (x1(n),z2(n)) and (zf(n),z5(n)) of system (1.2) with initial condition

(1.3), we have
lim (z}(n) —z;(n)) =0, i=1,2.

n—4oo

Proof. Firstly, let Vi1(n) = |Inzy(n) — Inzj(n)|. From (4.1), we have that

z(n+1) n@ n)[z1(n) —zi(n ca(n)|za(n —1) —z5(n—1
‘ nx’{(n+1)| < |1nx,{(n) by (n)[z1(n) — 23 (n)]| + c1(n) |za( 1) — o5( 1)]
+ b1(n) Z {|x1(5) — x”{(s)!Al(s)[al(s) + b1(3)|xi(s — 01)| + cl(s)|x§(s — 7'1)H

+ |x1(s)|Bl(s) [61(8)’1'2(8 —1)—ax5(s— 7'1)| + bl(s)’zl(s —o1) —zi(s— 01)|] }, (4.8)

6
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Since
zi(n) — xj(n) = e — M) = &(n) In(a(n) /2] (n), i=1,2,

where &;(n) lies between z;(n) and z}(n),7 = 1,2, it follows that

| In(z1(n) /21 (n)) = bi(n)[w1(n) — 27 (n)]|
= |In(z1(n)/27(n)) — br(n)é1(n) In(z1(n) /27 (n))|

= | (1 (n) /2 ()] — (&zn ‘5 ()| ) s () — a3 (o). (4.9)

By Theorem 3.1, there are constants M; > 0(i

= 1,2), and a positive integer ng such that for n > ng,0 <
zi(n),xf(n) < M;(i =1,2). Then from (4.7) and (4.8)

we can obtain that for n > ng + 7,

1 1 " .
AV < (fl( ’ &) b1(n)‘>|z1(n)—xl(n)|—|—cl(n)|x2(n—ﬁ)—xQ(n—ﬁ)|
T bin {A1 )+ Miby (5) + Maca ()] (s) - 7(5)

+ MlBl(s)cl(s)|x2(s —71) = a3(s — 11)| + M1By(s)bi(s)|21(s — o1) — 2 (s — 01)|}.(4.10)

Secondly, let

n—1

Vis(n) = > ci(s+71)|wa(s) — 23(s)]
S_:LL—;l—Q—al n—1
+ Z b1(s) Z {Al(u)[al(u) + Myby(u) + Macy(u ’,7:1 — x’{(u)‘

+ MlBl(u)cl(u)’xg(u —71) —ai(u— 7'1)’

+M131(U)b1(u)|$1(u—01)—$>{(U—Ul)|}. (411)

By a simple calculation, we can obtain

AVip = c1(n + 71)|w2(n) — a8 (n)| — c1(n)|za(n — 71) — x5 (n — 71)|
n+crl
A1 +M1b1( )-I-Mzcl ‘1‘1 —x’{(n)’
s= n+1

+ M1 Bi(n)ei(n ’xg (n—m) —mg(n—ﬁ)’
)

+MlBl(TL bl(n)’xl(n—al) —x’l‘(n—al)|}

n—1
—b1(n) Z {Al(u)[al(u)—i—Mlbl( )+ Maeq (u |;v1 —x*{(u)‘
+ MlBl(u)cl(u)‘mg(u —7) —a5(u— Tl)‘
+MlBl(u)b1(u)|x1(ual)xf(u01)|}. (412)
Thirdly,let
n—1 l+714+01
V13(n)2M1 Z B1(l+7'1)01(l+7'1)}$2(l)—x;(l)| Z bl(S)
l=n—71 s=l+711+1
n—1 14+204
+M Y Bil+o)bi(l+o)|n() —2i()] Y bi(s).
l=n—o1 s=l+o1+1
7
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Then we can derive

n+7t1+o1
AVis = M, Z bi(s)Bi(n + 71)e1(n + m1)|22(n) — 25(n)|
s=n—+71+1
n+o1
- M Z b1(s)Bi(n)ci(n)|we(n — 1) — ab(n — 71|
s=n-+1
n+2o01
+ M, Z b1(s)Bi(n+ o1)bi(n+ o1)|z1(n) — 25(n)|
s=n+o1+1
n+o1
— M Z by (s)B1(n)bi(n)|z1(n — 01) — 2} (n — o1))| (4.13)
s=n-+1

Now we set Vi(n) = Vi1(n) + Via(n) + Vis(n). Then from (4.8)-(4.13), we have that for n > ng + 7,
1 1 . *
AV < _<% - ‘m = b1(m)| ) [21(n) = T ()] + €1 + 7o) w2 () — w3(0)
n+o1
+ ) bi(s)Ar(n)[ar(n) + Miby(n) + Macy (n)]]a1 (n) — 27} (n)]
s=n+1
n+7r1+o1
+ Y bi(s)MiBi(n+m)er(n+ m1)|w2(n) — 23 (n))|
s=n+71+1
n—:_201+
+ Z b1 (s)MyBy(n + o1)bi(n + o1)|21(n) — 25 (n)|.
s=n—+o1+1

By arguments similar to those above, we take

Vai(n) = |lnx2(n) - 1n$§(”)|7
n—1
Vao(n) = Z co(s + Tg)’xl(s) - x’{(s)|
Cttes
+ Z b1(s) Z {Ag(u)[ag(u) + Moby(u) + Mlcg(u)]’xg(u) — xé(u)‘
+ MyBs(u)ea(u)|@1(u — 72) — @} (u — 72)| + MaBa(u)ba (u) |w2(u — 02) — 5 (u — 02) },
n—1 l+1o+402
Vgg(n) = Ms Z BQ(Z+T2)CQ(Z+T2)|$1(Z) —Z‘T(l)| Z bg(S)
l=n—m2 s=l+7o+1
n—1 I+209
+ My Y Ba(l+02)ba(l+0)|a(l) —23()] D ba(s).
l=n—oy s=l+oo+1

Similarly, we take V5(n) = Va1(n) + Vaa(n) + Va3(n), then in the same way as obtaining AVj, we can obtain
forn > ng+ T,

AVa(n) < —( 2(n)])[a(n) = w3 ()] + ealn+ 7)1 (m) — @i ()]

1 1
&(n) ’52(”) -0
n+oo
+ ) ba(s)Aa(n)[as(n) + Maby(n) + Micy(n)]|z2(n) — 23(n)|
s=n+1
n+72+02
+ Y ba(s)MaBa(n + m)ea(n + )| 71 (n) — 2} (n))]
s=n-+T72+1
n+2oo
+ Z ba(s)M2Ba(n + 02)ba(n + 02)|w2(n) — 23(n)].
s=n-+os+1

Copyright © scitecpub.com, all right reserved.
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Now we define a Lyapunov-like discrete functional V' by

V(n) = B1Vi(n) + B2Va(n).

It is easy to see that V(ng 4+ 7) < +o0o. Calculating the difference of V' along the solution of (1.2) with initial
condition (1.3), we have that for n > ng + 7,

n+20;

2
AV() <=3 {Bz [(5 ok ﬁ b)) = Y BMBin + o)l + )
= v v s=n+4o;+1
n+o;
s=n+1
n+7j+o;
il T+ Y b (M B+ 7)ei(n+ )] }<x-<n> — i (n)]
s=n+71;+1

<-y {51 [mm{b Ly aiMi(bi“)QBf}

i=1

— {ﬂiaib;‘A;‘(a? + i M; + ¢i' M;) + B; (c +0;M; b“B“ ) } }’x,(n) — xf(n)’

Mw

(Bz ij Bj “T - xf(”)’

Il
=

=1

where E;; and F; are defined by (4.7).
Then we have that

n

Y Vp+1)-V(p)< - Z Z

p=no+7 p=r

which implies
n

OENEDY Z!x (p)] < V(o + 7).

p=no+7 i=1
That is )
= . Ving+7
> S fetr) -] < L
p=no+7 i=1 N
and then ,
o0
v
S S i) — ()] < LD oo
n=no+7 i=1 n
which means that lim Z |zi(n) — 2} (n)| = 0, that is

n—>+oo

lim (x;(n) —27(n)) =0, i=1,2.

n—-+oo

It means that (z1(n),x2(n)) is globally attractive. This completes the proof of Theorem 4.1.

5 Almost periodic solution

In this section, we will study the existence of a globally attractive almost periodic sequence solution of
system (1.2) with initial condition (1.3) by means of an almost periodic functional hull theory and constructing

a suitable Lyapunov function, and obtain the sufficient conditions.
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Let {0} be any integer valued sequence such that 6, — oo as k — oo. According to Lemma 2.1, taking
a subsequence if necessary, we have a;(n + 0;) — af(n),bi(n + dx) — bi(n),ci(n + dx) = cf(n), i = 1,2, as
k — oo for n € Z. Then we get a hull equation of system (1.2) as follows:
i) (n — Tl)
1+az2(n—1) )’

x1(n — 12) }7

1+ z1(n —72)

21(n+1) = o1 (n) exp {a’{(n) — i ()zs(n— 01) + ¢} ()
(5.1)

za(n + 1) = xa(n) exp {aé(n) —b3(n)xa(n — 02) + c3(n)

By the almost periodic theory, we can conclude that if system (1.2) satisfies (4.6), then the hull equation (5.1)
of system (1.2) also satisfies (4.6).
By Theorem 3.4 in [18], we can easily obtain the lemma as follows.

Lemma 5.1 If each hull equation of system (1.2) has a unique strictly positive solution, then the almost

periodic difference system (1.2) has a unique strictly positive almost periodic solution.

Theorem 5.1 If the almost periodic difference system (1.2) satisfies (4.6), then the almost periodic dif-
ference system (1.2) admits a unique strictly positive almost periodic solution, which is globally attractive.

Proof. By Lemma 5.1, we only need to prove that each hull equation of system (1.1) has a unique glob-
ally attractive almost periodic sequence solution; hence we firstly prove that each hull equation of system (1.1)
has at least one strictly positive solution(the existence), and then we prove that each hull equation of system
(1.1) has a unique strictly positive solution(the uniqueness).

Now we prove the existence of a strictly positive solution of any hull equation (5.1). By the almost
periodicity of {a;(n)},{b;(n)} and {c;(n)},i = 1,2, there exists an integer valued sequence {73} with 7, — oo
as k — oo such that af(n+d;) — af(n), b (n+d;) = bi(n),ci(n+dx) = cf(n),i=1,2,as k — oo for n € Z.
Suppose that X = (z1(n),z2(n)) is any solution of hull equation (5.1). By the proof of Lemma 2.2 and 2.3,

we have
m; < liminfz;(n) <limsupz;(n) < M;, i=1,2. (5.2)
n—-+00 n—-—4o00
And also
0 < inf z;(n) < sup z;(n) < oo, i=1,2.
nez+ nezZ+

Let € be an arbitrary small positive number. There exists a positive integer ng such that m; —e < z;(n) < M;+
g,n > ng,i = 1,2. Write Xg(n) = X(n+ 1) = (21x(n), zar(n)), for all n > ng +7 — 7, k € Z*. We claim that
there exists a sequence {y;(n)}, and a subsequence of {7}, we still denote by {7} such that z;(n) — y;(n),
uniformly in n on any finite subset B of Z as k — oo, where B = {a1,a2,...,am},an € Z(h =1,2,...,m)
and m is a finite number.

In fact, for any finite subset B C Z, when k is large enough, 7, + ap — 7 > ng,h =1,2,...,m. So

m; —e<xzin+7) <M +e, i=1,2,

that is, {z;(n + 1)} are uniformly bounded for large enough k.

Now, for a; € B, we can choose a subsequence {7',51)} of {71} such that {z;(a; +7‘,51))} uniformly converges
on Z7T for k large enough.

Similarly, for az € B, we can choose a subsequence {7,52)} of {T,El)} such that {z;(as + 7'152))} uniformly
converges on Z1 for k large enough.

Repeating this procedure, for a,, € B, we can choose a subsequence {T,Em)} of {T,imfl)} such that {z;(am+
T,Em))} uniformly converges on ZT for k large enough.

Now pick the sequence {T]Em)} which is a subsequence of {71}, we still denote it as {7} }, then for all n € B,

we have z;(n + 1) — y;(n) uniformly in n € B, as k — .

10
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By the arbitrary of B, the conclusion is valid.
Combined with

z1(n+ 1) = x1x(n) exp {a?(n +71,) = bi(n+ 1)z (N —01) + T (N + Tk)

Zop(n — 1) }7

14+ zak(n— 1)

zT1k(n — T2) }7

xop(n 4+ 1) = xor(n) exp {ag(n + 7)) — b5 (n 4 Tk )xor (N — 02) + (N + Tk) Ty —

gives

-+ 1) = () exp a3 ) = b (n = o) + iy 220,

1+y2(n—71)
sali-+ 1) = () exp {a30) — B30 = o) + i) 2

We can easily see that Y (n) = (y1(n), y2(n)) is a solution of hull equation (5.1) and m; —e < y;(n) < M;+e,i =
2, for n € Z. Since ¢ is an arbitrary small positive number, it follows that m; < y;(n) < M;,i = 1,2, for
n € Z, that is

0< 1nf yi(n) < supy;(n) < oo, i=1,2.
nez nez

Hence each hull equation of almost periodic difference system (1.2) has at least one strictly positive solution.

Now we prove the uniqueness of the strictly positive solution of each hull equation (5.1). Suppose that
the hull equation (5.1) has two arbitrary strictly positive solutions (z3(n),z5(n)) and (y§(n),y5(n)). Like in
the proof of Theorem 4.1, we construct a Lyapunov functional

Zﬁz< )+ Viz(n) + (n)), ne Z, (5.3)
where

Vi(n) = |Inzi(n) —Iny;(n)|

n—1

Vis(n)= > cls+7)|a;(s) — y;(s)]
7n—11+o¢ n—1
+ Y bi(s) > {Ai(u)[ai(u) + M;bi(u) + Mjci(u)] |2 (u) — y; ()|

+ MZBZ(u)Cl(uﬂx;(u —7i) —yj(u— 7i)|

+ M;B;(u)bi(u)| 2} (u — 07) — yf (u — 01*)\}7

n—1 l4+1i+0;
=M, Z L+ 7)ei(L+ i) |x yj(l)| Z bi(s)
l=n—1; s=l+1;+1
n—1 1+20;
+M; Y Bi(l+o)bi(l+o)|ai () —yi )] D bils), ij=1,2i#]
l=n—o; s=l+o;+1

Calculating the difference of V* along the solution of the hull equation(5.1), like in the discussion of (4.13),
one has
2

AV < 03 fein) — i ()], e Z. (5.4)

i=1
From (5.4), we can see that V*(n) is a non-increasing function on Z. Summing both sides of the above

inequalities from n to 0, we have

0
)
k=

n i=

2
|} (k k) <V*0)-V*(n+1), n<O0.
1

11
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Note that V*(n) is bounded. Hence we have

0 2

Yo > Iz k) —yi (k)] < +oo,

k=—o0 i=1
which implies that

lim |zf(n) —yi(n)|=0, i=1,2. (5.5)

n—oo

2
Define Q = Y «;Q;, where

i=1

1
Qi = — + Tict + oVl [AY(al + MbY + Mjct) + M; B (c¥ + bY)]

m;

+ O'iMiB;L(TiC? + O'ib?), i,j=1,2,i # j.

Let € be an arbitrary small positive number. It follows from (5.5) that there exists a positive integer

ny > 0 such that |zf(n) — yf(n)| < %

,n < —ny,i = 1,2. Therefore, for n < —nq,1,j = 1,2, # j,

Vii(n ><—|a: () — i) < — <

m; Q'
Via(n) < mic! ‘0 ~ + ol A + Mby’ + Mjeit) max | (p) — vy ()]

+ M, B max |« (p) = v; (p)| + MiBYb; max [a (p) — v (7)

< {mict + V(AT (0} + MibY + Myet) + MiBY (el + b))}

)

Q| m

Via(n) < oimiMicy B max | (p) — y; (p)| + o} M;b; B! max [z (p) = v (P)]
£
G

It follows from (5.3) and above inequalities that

< 0iM; B (rici’ + 0:b}')

2
£
n) S § Bleé =g, n<—ny,
i=1

so lim V*(n) = 0. Note that V*(n) is a non-increasing function on Z, and then V*(n) = 0. that is z}(n) =

n——oo
yr(n),i = 1,2, for all n € Z, Therefore, each hull equation of system (1.2) has a unique strictly positive
solution.

In view of the above discussion, any hull equation of system (1.2) has a unique strictly positive solution.
By Lemma 2.2-2.3 and Theorems 4.1, the almost periodic difference system (1.2) has a unique strictly positive
almost periodic solution which is globally attractive. The proof is completed. O

Let 7;; =0,¢=1,2,5 =0,1,2. Like in the proof of Theorem 4.1, we have the following corollary.

Corollary 5.1 Let oy = 09 = 71 = 7 = 0. Assume that there exist positive constants 3, and s, such that

B; min{b!, ——b"} Bicj >0, i,5=1,2,i#j,

1
where M; = i exp {a;J + b — 1}. Then the almost periodic difference system (1.1) admits a unique strictly

3
positive almost periodic solution, which is globally attractive.
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6 Example and numerical simulation

In this section, we give the following example to check the feasibility of our result.

Example Consider the following almost periodic discrete Lotka-Volterra mutualism model with delays:

z1(n+1) =z1(n)exp {0.025 + 0.005sin(n) — (1.0075 — 0.0025 cos(n))z1(n — 1)

a(n — 2) }

0.03 — 0.005 cos —_—
+ ( cos(n)) ="

(6.1)
xa(n+1) = z9(n) exp {0.015 + 0.005 cos(n) — (1.15 4 0.05sin(n))za(n — 1)

+ (0.02 — 0.005 sin(n))xl(n_Q)}.

1+ z1(n—2)
0.035 T T T T T T T T T 0.03
P! 0.028
0-03\ 7 ol
0.024F

00250 k| 0.022F

0.02

solution x
solution x,

0.018 1
0.016 \\‘\‘—M
0.014
0.012
0.01 . . . . . . . . . 0.01 . . . . . . . . .
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
time n time n

FIGURE1: Dynamic behavior of system (6.1) with the initial conditions (x1(n), z2(n)) = (0.013,0.018) and
(0.032,0.025),n = 1,2, 3 for k € [1,100], respectively.

0.0136

0.0136
0.0253
0.0135¢

B >

c c

2 00252} 2 00135

2 2

o o

»n »n
0.0134

0.0251 ' ! 4
0.0133
0.025 L L L L 0.0133 L L L L
500 520 540 560 580 600 500 520 540 560 580 600
time n time n

FIGURE2: Dynamic behavior of system (6.1) with the initial conditions (x1(n),z2(n)) = (0.013,0.018) and
(0.032,0.025),n = 1,2, 3 for k € [500,600], respectively.

By simple computation, we derive
M; =~ 0.4169, Ms ~ 0.3659, Ej» ~ 0.4893, Es ~ 0.4992, F; ~ 0.0507, F ~ 0.0365.

Then
Fio — F5 = 0.4528 > 0.4, Fo; — F} =~ 0.4485 > 0.4.

Also it is easy to see that the condition (4.6) is verified. Therefore, system (6.1) has a unique strictly positive
almost periodic solution which is globally attractive. Our numerical simulations support our results(see Figs.1
and 2).
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