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Abstract

In this paper, we consider an almost periodic discrete Lotka-Volterra mutualism model with delays. We first

obtain the permanence and global attractivity of the system. By means of an almost periodic functional hull

theory and constructing a suitable Lyapunov function, sufficient conditions are obtained for the existence of a

unique strictly positive almost periodic solution which is globally attractive. An example together with numerical

simulation indicates the feasibility of the main result.
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1 Introduction

In reference [1], Li had studied a discrete mutualism model with time delays:
x1(k + 1) = x1(k) exp

{
r1(k)

[
K1(k) + α1(k)x2(k − τ2(k))

1 + x2(k − τ2(k))
− x1(k − σ1(k))

]}
,

x2(k + 1) = x2(k) exp

{
r2(k)

[
K2(k) + α2(k)x1(k − τ1(k))

1 + x1(k − τ1(k))
− x2(k − σ2(k))

]}
,

(1.1)

where {ri(k)}, {Ki(k)}, {αi(k)}, {τi(k)} and {σi(k)}, with i = 1, 2, are positive ω-periodic sequence, and

αi > Ki. By using the theory of coincidence degree theory, it is proved that system (1.1) has at least one

positive ω-periodic solution.

Under the assumptions that ri,Ki, αi, τi and σi, with i = 1, 2, are non-negative sequence bounded above

and below by positive constants, and αi > Ki, i = 1, 2, Chen [2] obtained sufficient conditions that ensure

the permanence of the system (1.1). To the best of the author’s knowledge, though many works have been

done for the mutualism model with time delays [3–5], most of the works dealt with the continuous time model.

For more results about the existence of almost periodic solutions of a continuous time system, we can refer

to [6–9] and the references cited therein. To this day, still no scholars have considered discrete almost periodic

mutualism system with delays.

In this paper, we study the following discrete Lotka-Volterra mutualism model with delays and feedback

control

x1(n+ 1) = x1(n) exp

{
a1(n)− b1(n)x1(n− σ1) + c1(n)

x2(n− τ1)

d1(n) + x2(n− τ1)
− e1(n)u1(n− δ1)

}
,

x2(n+ 1) = x2(n) exp

{
a2(n)− b2(n)x2(n− σ2) + c2(n)

x1(n− τ2)

d2(n) + x1(n− τ2)
− e2(n)u2(n− δ2)

}
,

∆u1(n) = −f1(n) + g1(n)x1(n− η1),

∆u2(n) = −f2(n) + g2(n)x2(n− η2)

(1.2)
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where {ai(n)}, {bi(n)} and {ci(n)}(i = 1, 2) are bounded nonnegative almost periodic sequences such that

0 < ali ≤ ai(n) ≤ aui , 0 < bli ≤ bi(n) ≤ bui , 0 < cli ≤ ci(n) ≤ cui ,

where i = 1, 2, n ∈ Z. For any bounded sequence f(n) defined on Z, fu = sup
n∈Z

f(n), f l = inf
n∈Z

f(n). Also τi

and σi(i = 1, 2) are positive integers.

By the biological meaning, we will focus our discussion on the positive solutions of system (1.2). So it is

assumed that the initial conditions of system (1.2) are the form:

xi(θ) = φi(θ) ≥ 0, φi(0) > 0, θ ∈ N [−τ, 0] = {−τ,−τ + 1, . . . , 0}, τ = max{τ1, σ1, τ2, σ2}. (1.3)

With the stimulation from the works [10–18], the main purpose of this paper is to obtain a set of sufficient

conditions to ensure the existence of a unique globally attractive positive almost periodic solution of system

(1.2) with initial condition (1.3).

The remaining part of this paper is organized as follows: In Section 2, we will introduce some definitions

and several useful lemmas. In the next section, we establish the permanence of system (1.2). Sufficient

conditions for the global attractivity of system (1.2) are showed in Section 4. Then, in Section 5, we establish

sufficient conditions to ensure the existence of a unique strictly positive almost periodic solution, which is

globally attractive. The main result is illustrated by an example with a numerical simulation in the last

section.

2 Preliminaries

First, we give the definitions of the terminologies involved.

Definition 2.1( [19]) A sequence x : Z → R is called an almost periodic sequence if the ε-translation

set of x

E{ε, x} = {τ ∈ Z :| x(n+ τ)− x(n) |< ε, ∀n ∈ Z}

is a relatively dense set in Z for all l(ε) > 0; that is, for any given l(ε) > 0, there exists an integer l(ε) > 0

such that each interval of length l(ε) contains an integer τ ∈ E{ε, x} with

| x(n+ τ)− x(n) |< ε, ∀n ∈ Z.

τ is called an ε-translation number of x(n).

Definition 2.2( [20]) Let D be an open subset of Rm, f : Z × D → Rm. f(n, x) is said to be almost

periodic in n uniformly for x ∈ D if for any ε > 0 and any compact set S ⊂ D, there exists a positive integer

l = l(ε, S) such that any interval of length l contains an integer τ for which

|f(n+ τ, x)− f(n, x)| < ε, ∀(n, x) ∈ Z × S.

τ is called an ε-translation number of f(n, x).

Definition 2.3( [21]) The hull of f, denoted by H(f), is defined by

H(f) = {g(n, x) : lim
k→∞

f(n+ τk, x) = g(n, x) uniformly on Z × S},

for some sequence {τk}, where S is any compact set in D.

Definition 2.4 Suppose that X(n) = (x1(n), x2(n)) is any solution of system (1.1). X(n) is said to be a

strictly positive solution in Z if for n ∈ Z and i = 1, 2

0 < inf
n∈Z

xi(n) ≤ sup
n∈Z

xi(n) < ∞.
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Now, we state several lemmas which will be useful in proving our main result.

Lemma 2.1( [22]) {x(n)} is an almost periodic sequence if and only if for any integer sequence {k′i}, there
exists a subsequence {ki} ⊂ {k′i} such that the sequence {x(n + ki)} converges uniformly for all n ∈ Z as

i → ∞. Furthermore, the limit sequence is also an almost periodic sequence.

Lemma 2.2( [2]) Assume that {x(n)} satisfies x(n) > 0 and

x(n+ 1) ≤ x(n) exp{a(n)− b(n)x(n)}

for n ∈ N , where a(n) and b(n) are non-negative sequences bounded above and below by positive constants.

Then

lim sup
n→+∞

x(n) ≤ 1

bl
exp(au − 1).

Lemma 2.3( [2]) Assume that {x(n)} satisfies

x(n+ 1) ≥ x(n) exp{a(n)− b(n)x(n)}, n ≥ N0,

lim sup
n→+∞

x(n) ≤ x∗

and x(N0) > 0, where a(n) and b(n) are non-negative sequences bounded above and below by positive constants

and N0 ∈ N . Then

lim inf
n→+∞

x(n) ≥ min

{
al

bu
exp{al − bux∗}, a

l

bu

}
.

3 Permanence

In this section, we establish the permanence result for system (1.2).

Theorem 3.1 System (1.2) with initial condition (1.3) is permanent, that is, there exist positive constants

mi and Mi(i = 1, 2) which are independent of the solutions of system (1.2), such that for any positive solution

(x1(n), x2(n)) of system (1.2), one has:

mi ≤ lim inf
n→+∞

xi(n) ≤ lim sup
n→+∞

xi(n) ≤ Mi, i = 1, 2.

Proof. Let (x1(n), x2(n)) be any positive solution of system (1.2) with initial condition (1.3). From the first

equation of system (1.2) it follows that

x1(n+ 1) ≤ x1(n) exp
{
a1(n) + c1(n)

}
≤ x1(n) exp

{
au1 + cu1

}
. (3.1)

By using (3.1), one could easily obtain that

x1(n− σ1) ≥ x1(n) exp
{
− σ1(a

u
1 + cu1 )

}
. (3.2)

Substituting (3.2) into the first equation of system (1.2), it follows that

x1(n+ 1) ≤ x1(n) exp

{
au1 + cu1 − bl1 exp

{
− σ1(a

u
1 + cu1 )

}
x1(n)

}
. (3.3)

Thus, as a direct corollary of Lemma 2.2, according to (3.3), one has

lim sup
n→+∞

x1(n) ≤
1

bl1
exp{(au1 + cu1 )(σ1 + 1)− 1} , M1. (3.4)

By using the second equation of system (1.2), similar to the analysis of (3.1)-(3.4), we can obatin

lim sup
n→+∞

x2(n) ≤
1

bl2
exp{(au2 + cu2 )(σ2 + 1)− 1} , M2. (3.5)
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For any small positive constant ε > 0, from (3.4) and (3.5) it follows that there exists a N1 > 0 such that

for all n > N1 and i = 1, 2,

xi(n) ≤ Mi + ε. (3.6)

For n ≥ N1 + σ1, from (3.6) and the first equation of system (1.2), we have

x1(n+ 1) ≥ x1(n) exp
{
a1(n)− b1(n)x1(n− σ1)

}
≥ x1(n) exp

{
al1 − bu1 (M1 + ε)

}
. (3.7)

Thus, by using (3.7) we obtain

x1(n− σ1) ≤ x1(n) exp
{
− σ1[a

l
1 − bu1 (M1 + ε)]

}
. (3.8)

Substituting (3.8) into the first equation of system (1.2), for n ≥ N1 + σ1, it follows that

x1(n+ 1) ≥ x1(n) exp

{
al1 − bu1 exp

{
− σ1[a

l
1 − bu1 (M1 + ε)]

}
x1(n)

}
. (3.9)

Thus, as a direct corollary of Lemma 2.3, according to (3.4) and (3.9), one has

lim inf
n→+∞

x1(n) ≥ min{A1ε, A2ε}, (3.10)

where

A1ε =
al1
bu1

exp
{
σ1[a

l
1 − bu1 (M1 + ε)]

}
,

A2ε = A1ε exp

{
al1 − bu1 exp

{
− σ1[a

l
1 − bu1 (M1 + ε)]

}
M1

}
.

Letting ε → 0, it follows that

lim inf
n→+∞

x1(n) ≥
1

2
min{A1, A2} , m1 > 0, (3.11)

where

A1 =
al1
bu1

exp
{
σ1(a

l
1 − bu1M1)

}
,

A2 = A1 exp

{
al1 − bu1 exp

{
− σ1(a

l
1 − bu1M1)

}
M1

}
.

Similar to the analysis of (3.7)-(3.11), by applying (3.6), from the second equation of system (1.2), we

also have that

lim inf
n→+∞

x2(n) ≥
1

2
min{B1, B2} , m2 > 0, (3.12)

where

B1 =
al2
bu2

exp
{
σ2(a

l
2 − bu2M2)

}
,

B2 = B1 exp

{
al2 − bu2 exp

{
− σ2(a

l
2 − bu2M2)

}
M2

}
.

Then, (3.4),(3.5) and (3.11),(3.12) show that system (1.2) is permanent. The proof is completed.
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4 Global attractivity

In this section, by constructing a non-negative Lyapunov-like functional, we will obtain sufficient condi-

tions for global attractivity of positive solutions of system (1.2) with initial condition (1.3). We first introduce

a definition and prove a lemma which will be useful to obtain our main result.

Definition 4.1 A solution (x1(n), x2(n)) of system (1.2) with initial condition (1.3) is said to be globally

attractive if for any other solution (x∗
1(n), x

∗
2(n)) of system (1.2) with initial condition (1.3), we have

lim
n→+∞

(x∗
i (n)− xi(n)) = 0, i = 1, 2.

Lemma 4.1 For any two positive solutions (x1(n), x2(n)) and (x∗
1(n), x

∗
2(n)) of system (1.2) with initial

condition (1.3), we have

ln
xi(n+ 1)

x∗
i (n+ 1)

= ln
xi(n)

x∗
i (n)

− bi(n)[xi(n)− x∗
i (n)] + ci(n)

[
1

1 + x∗
j (n− τi)

− 1

1 + xj(n− τi)

]

+bi(n)
n−1∑

s=n−σi

{
[xi(s)− x∗

i (s)]Ai(s)[ai(s)− bi(s)x
∗
i (s− σi) + ci(s)

x∗
j (s− τi)

1 + x∗
j (s− τi)

]

+ xi(s)Bi(s)

[
ci(s)

[ 1

1 + x∗
j (s− τi)

− 1

1 + xj(s− τi)

]
− bi(s)[xi(s− σi)− x∗

i (s− σi)]

]}
, (4.1)

where

Ai(s) = exp
{
θi(s)[ai(s)− bi(s)x

∗
i (s− σi) + ci(s)

x∗
j (s− τi)

1 + x∗
j (s− τi)

]
}
,

Bi(s) = exp

{
φi(s)[ai(s)− bi(s)xi(s− σi) + ci(s)

xj(s− τi)

1 + xj(s− τi)
]

+ (1− φi(s))
[
ai(s)− bi(s)x

∗
i (s− σi) + ci(s)

x∗
j (s− τi)

1 + x∗
j (s− τi)

]}
, (4.2)

θi(s), φi(s) ∈ (0, 1), i ̸= j; i, j = 1, 2.

Proof. For i ̸= j; i, j = 1, 2, we can have from(1.2)

ln
xi(n+ 1)

x∗
i (n+ 1)

− ln
xi(n)

x∗
i (n)

= ln
xi(n+ 1)

xi(n)
− ln

x∗
i (n+ 1)

x∗
i (n)

= ai(n)− bi(n)xi(n− σi) + ci(n)
xj(n− τi)

1 + xj(n− τi)
−
[
ai(n)− bi(n)x

∗
i (n− σi) + ci(n)

x∗
j (n− τi)

1 + x∗
j (n− τi)

]

= ci(n)

[
xj(n− τi)

1 + xj(n− τi)
−

x∗
j (n− τi)

1 + x∗
j (n− τi)

]
− bi(n)[xi(n− σi)− x∗

i (n− σi)]

= ci(n)

[
1

1 + x∗
j (n− τi)

− 1

1 + xj(n− τi)

]
− bi(n)[xi(n)− x∗

i (n)]

+ bi(n){[xi(n)− xi(n− σi)]− [x∗
i (n)− x∗

i (n− σi)]},

that is

ln
xi(n+ 1)

xi(n)
= ln

x∗
i (n+ 1)

x∗
i (n)

+ ci(n)

[
1

1 + x∗
j (n− τi)

− 1

1 + xj(n− τi)

]
−bi(n)[xi(n)− x∗

i (n)] + bi(n)
{
[xi(n)− xi(n− σi)]− [x∗

i (n)− x∗
i (n− σi)]

}
. (4.3)
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Since

[xi(n)− xi(n− σi)]− [x∗
i (n)− x∗

i (n− σi)]

=
n−1∑

s=n−σi

[xi(s+ 1)− xi(s)]−
n−1∑

s=n−σi

[x∗
i (s+ 1)− x∗

i (s)]

=

n−1∑
s=n−σi

{[xi(s+ 1)− x∗
i (s+ 1)]− [xi(s)− x∗

i (s)]}, (4.4)

and

[xi(s+ 1)− x∗
i (s+ 1)]− [xi(s)− x∗

i (s)]

= xi(s) exp

{
ai(s)− bi(s)xi(s− σi) + ci(s)

xj(s− τi)

1 + xj(s− τi)

}
− x∗

i (s) exp

{
ai(s)− bi(s)x

∗
i (s− σi) + ci(s)

x∗
j (s− τi)

1 + x∗
j (s− τi)

}
− [xi(s)− x∗

i (s)]

= [xi(s)− x∗
i (s)]

{
exp

[
ai(s)− bi(s)x

∗
i (s− σi) + ci(s)

x∗
j (s− τi)

1 + x∗
j (s− τi)

]
− 1

}
+ xi(s)

{
exp

[
ai(s)− bi(s)xi(s− σi) + ci(s)

xj(s− τi)

1 + xj(s− τi)

]
− exp

[
ai(s)− bi(s)x

∗
i (s− σi) + ci(s)

x∗
j (s− τi)

1 + x∗
j (s− τi)

]}
.

Using the Mean Value Theorem, we get

[xi(s+ 1)− x∗
i (s+ 1)]− [xi(s)− x∗

i (s)]

= [xi(s)− x∗
i (s)]Ai(s)

[
ai(s)− bi(s)x

∗
i (s− σi) + ci(s)

x∗
j (s− τi)

1 + x∗
j (s− τi)

]
+ xi(s)Bi(s)

[
ci(s)

[ 1

1 + x∗
j (s− τi)

− 1

1 + xj(s− τi)

]
− bi(s)[xi(s− σi)− x∗

i (s− σi)]

]
, (4.5)

here Ai(s), Bi(s) are defined by (4.2). Then from (4.3)-(4.5), we can easily obtain (4.1). The proof is completed.

Theorem 4.1 Assume that in system (1.2) with initial condition (1.3), there exist positive constants β1, β2

and η > 0 such that

βiEij − βjFj ≥ η, i, j = 1, 2, j ̸= i (4.6)

where

Eij = min{bli,
2

Mi
− bui } − σiMi(b

u
i )

2Bu
i − σib

u
i A

u
i (a

u
i + bui Mi + cui Mj);

Fj = cuj + σjMjb
u
jB

u
j c

u
j . (4.7)

Then for any two positive solutions (x1(n), x2(n)) and (x∗
1(n), x

∗
2(n)) of system (1.2) with initial condition

(1.3), we have

lim
n→+∞

(x∗
i (n)− xi(n)) = 0, i = 1, 2.

Proof. Firstly, let V11(n) =
∣∣ lnx1(n)− lnx∗

1(n)
∣∣. From (4.1), we have that∣∣ ln x1(n+ 1)

x∗
1(n+ 1)

∣∣ ≤ ∣∣ ln x1(n)

x∗
1(n)

− b1(n)[x1(n)− x∗
1(n)]

∣∣+ c1(n)
∣∣x2(n− τ1)− x∗

2(n− τ1)
∣∣

+ b1(n)

n−1∑
s=n−σ1

{∣∣x1(s)− x∗
1(s)

∣∣A1(s)[a1(s) + b1(s)
∣∣x∗

1(s− σ1)
∣∣+ c1(s)

∣∣x∗
2(s− τ1)

∣∣]
+
∣∣x1(s)

∣∣B1(s)
[
c1(s)

∣∣x2(s− τ1)− x∗
2(s− τ1)

∣∣+ b1(s)
∣∣x1(s− σ1)− x∗

1(s− σ1)
∣∣]}, (4.8)
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Since

xi(n)− x∗
i (n) = eln xi(n) − elnx∗

i (n) = ξi(n) ln(xi(n)/x
∗
i (n)), i = 1, 2,

where ξi(n) lies between xi(n) and x∗
i (n), i = 1, 2, it follows that∣∣ ln(x1(n)/x
∗
1(n))− b1(n)[x1(n)− x∗

1(n)]
∣∣

=
∣∣ ln(x1(n)/x

∗
1(n))− b1(n)ξ1(n) ln(x1(n)/x

∗
1(n))

∣∣
=

∣∣ ln(x1(n)/x
∗
1(n))

∣∣− ( 1

ξ1(n)
−
∣∣∣ 1

ξ1(n)
− b1(n)

∣∣∣)∣∣x1(n)− x∗
1(n)

∣∣. (4.9)

By Theorem 3.1, there are constants Mi > 0(i = 1, 2), and a positive integer n0 such that for n > n0, 0 <

xi(n), x
∗
i (n) ≤ Mi(i = 1, 2). Then from (4.7) and (4.8) we can obtain that for n ≥ n0 + τ,

△V11 ≤ −
( 1

ξ1(n)
−
∣∣∣ 1

ξ1(n)
− b1(n)

∣∣∣)∣∣x1(n)− x∗
1(n)

∣∣+ c1(n)
∣∣x2(n− τ1)− x∗

2(n− τ1)
∣∣

+ b1(n)
n−1∑

s=n−σ1

{
A1(s)[a1(s) +M1b1(s) +M2c1(s)]

∣∣x1(s)− x∗
1(s)

∣∣
+M1B1(s)c1(s)

∣∣x2(s− τ1)− x∗
2(s− τ1)

∣∣+M1B1(s)b1(s)
∣∣x1(s− σ1)− x∗

1(s− σ1)
∣∣}.(4.10)

Secondly, let

V12(n) =
n−1∑

s=n−τ1

c1(s+ τ1)
∣∣x2(s)− x∗

2(s)
∣∣

+

n−1+σ1∑
s=n

b1(s)
n−1∑

u=s−σ1

{
A1(u)[a1(u) +M1b1(u) +M2c1(u)]

∣∣x1(u)− x∗
1(u)

∣∣
+M1B1(u)c1(u)

∣∣x2(u− τ1)− x∗
2(u− τ1)

∣∣
+M1B1(u)b1(u)

∣∣x1(u− σ1)− x∗
1(u− σ1)

∣∣}. (4.11)

By a simple calculation, we can obtain

△V12 = c1(n+ τ1)
∣∣x2(n)− x∗

2(n)
∣∣− c1(n)

∣∣x2(n− τ1)− x∗
2(n− τ1)

∣∣
+

n+σ1∑
s=n+1

b1(s)

{
A1(n)[a1(n) +M1b1(n) +M2c1(n)]

∣∣x1(n)− x∗
1(n)

∣∣
+M1B1(n)c1(n)

∣∣x2(n− τ1)− x∗
2(n− τ1)

∣∣
+M1B1(n)b1(n)

∣∣x1(n− σ1)− x∗
1(n− σ1)

∣∣}
− b1(n)

n−1∑
u=n−σ1

{
A1(u)[a1(u) +M1b1(u) +M2c1(u)]

∣∣x1(u)− x∗
1(u)

∣∣
+M1B1(u)c1(u)

∣∣x2(u− τ1)− x∗
2(u− τ1)

∣∣
+M1B1(u)b1(u)

∣∣x1(u− σ1)− x∗
1(u− σ1)

∣∣}. (4.12)

Thirdly,let

V13(n) = M1

n−1∑
l=n−τ1

B1(l + τ1)c1(l + τ1)
∣∣x2(l)− x∗

2(l)
∣∣ l+τ1+σ1∑
s=l+τ1+1

b1(s)

+M1

n−1∑
l=n−σ1

B1(l + σ1)b1(l + σ1)
∣∣x1(l)− x∗

1(l)
∣∣ l+2σ1∑
s=l+σ1+1

b1(s).
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Then we can derive

△V13 = M1

n+τ1+σ1∑
s=n+τ1+1

b1(s)B1(n+ τ1)c1(n+ τ1)
∣∣x2(n)− x∗

2(n)
∣∣

−M1

n+σ1∑
s=n+1

b1(s)B1(n)c1(n)
∣∣x2(n− τ1)− x∗

2(n− τ1)
∣∣

+M1

n+2σ1∑
s=n+σ1+1

b1(s)B1(n+ σ1)b1(n+ σ1)
∣∣x1(n)− x∗

1(n)
∣∣

−M1

n+σ1∑
s=n+1

b1(s)B1(n)b1(n)
∣∣x1(n− σ1)− x∗

1(n− σ1)
∣∣ (4.13)

Now we set V1(n) = V11(n) + V12(n) + V13(n). Then from (4.8)-(4.13), we have that for n ≥ n0 + τ,

△V1 ≤ −
( 1

ξ1(n)
−
∣∣∣ 1

ξ1(n)
− b1(n)

∣∣∣)∣∣x1(n)− x∗
1(n)

∣∣+ c1(n+ τ2)
∣∣x2(n)− x∗

2(n)
∣∣

+

n+σ1∑
s=n+1

b1(s)A1(n)[a1(n) +M1b1(n) +M2c1(n)]
∣∣x1(n)− x∗

1(n)
∣∣

+

n+τ1+σ1∑
s=n+τ1+1

b1(s)M1B1(n+ τ1)c1(n+ τ1)
∣∣x2(n)− x∗

2(n)
∣∣

+

n+2σ1∑
s=n+σ1+1

b1(s)M1B1(n+ σ1)b1(n+ σ1)
∣∣x1(n)− x∗

1(n)
∣∣.

By arguments similar to those above, we take

V21(n) =
∣∣ lnx2(n)− lnx∗

2(n)
∣∣,

V22(n) =

n−1∑
s=n−τ2

c2(s+ τ2)
∣∣x1(s)− x∗

1(s)
∣∣

+

n−1+σ2∑
s=n

b1(s)

n−1∑
u=s−σ2

{
A2(u)[a2(u) +M2b2(u) +M1c2(u)]

∣∣x2(u)− x∗
2(u)

∣∣
+M2B2(u)c2(u)

∣∣x1(u− τ2)− x∗
1(u− τ2)

∣∣+M2B2(u)b2(u)
∣∣x2(u− σ2)− x∗

2(u− σ2)
∣∣},

V23(n) = M2

n−1∑
l=n−τ2

B2(l + τ2)c2(l + τ2)
∣∣x1(l)− x∗

1(l)
∣∣ l+τ2+σ2∑
s=l+τ2+1

b2(s)

+M2

n−1∑
l=n−σ2

B2(l + σ2)b2(l + σ2)
∣∣x2(l)− x∗

2(l)
∣∣ l+2σ2∑
s=l+σ2+1

b2(s).

Similarly, we take V2(n) = V21(n) + V22(n) + V23(n), then in the same way as obtaining △V1, we can obtain

for n ≥ n0 + τ,

△V2(n) ≤ −
( 1

ξ2(n)
−
∣∣∣ 1

ξ2(n)
− b2(n)

∣∣∣)∣∣x2(n)− x∗
2(n)

∣∣+ c2(n+ τ1)
∣∣x1(n)− x∗

1(n)
∣∣

+

n+σ2∑
s=n+1

b2(s)A2(n)[a2(n) +M2b2(n) +M1c2(n)]
∣∣x2(n)− x∗

2(n)
∣∣

+

n+τ2+σ2∑
s=n+τ2+1

b2(s)M2B2(n+ τ2)c2(n+ τ2)
∣∣x1(n)− x∗

1(n)
∣∣

+

n+2σ2∑
s=n+σ2+1

b2(s)M2B2(n+ σ2)b2(n+ σ2)
∣∣x2(n)− x∗

2(n)
∣∣.
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Now we define a Lyapunov-like discrete functional V by

V (n) = β1V1(n) + β2V2(n).

It is easy to see that V (n0 + τ) < +∞. Calculating the difference of V along the solution of (1.2) with initial

condition (1.3), we have that for n ≥ n0 + τ,

△V (n) ≤ −
2∑

i=1

{
βi

[( 1

ξi(n)
−
∣∣∣ 1

ξi(n)
− bi(n)

∣∣∣)−
n+2σi∑

s=n+σi+1

bi(s)MiBi(n+ σi)bi(n+ σi)
]

−
[
βi

n+σi∑
s=n+1

bi(s)Ai(n)[ai(n) +Mibi(n) +Mjci(n)]

+ βj [cj(n+ τj) +

n+τj+σj∑
s=n+τj+1

bj(s)MjBj(n+ τj)cj(n+ τj)]
]}∣∣xi(n)− x∗

i (n)
∣∣

≤ −
2∑

i=1

{
βi

[
min{bli,

2

Mi
− bui } − σiMi(b

u
i )

2Bu
i

]
−
[
βiσib

u
i A

u
i (a

u
i + bui Mi + cui Mj) + βj(c

u
j + σjMjb

u
jB

u
j c

u
j )
]}∣∣xi(n)− x∗

i (n)
∣∣

= −
2∑

i=1

(βiEij − βjFj)
∣∣xi(n)− x∗

i (n)
∣∣

≤ −η
2∑

i=1

∣∣xi(n)− x∗
i (n)

∣∣, j = 1, 2, j ̸= i,

where Eij and Fj are defined by (4.7).

Then we have that
n∑

p=n0+τ

[V (p+ 1)− V (p)] ≤ −η

n∑
p=n0+τ

2∑
i=1

∣∣xi(p)− x∗
i (p)

∣∣,
which implies

V (n+ 1) + η
n∑

p=n0+τ

2∑
i=1

∣∣xi(p)− x∗
i (p)

∣∣ ≤ V (n0 + τ).

That is
n∑

p=n0+τ

2∑
i=1

∣∣xi(p)− x∗
i (p)

∣∣ ≤ V (n0 + τ)

η

and then
∞∑

n=n0+τ

2∑
i=1

∣∣xi(n)− x∗
i (n)

∣∣ ≤ V (n0 + τ)

η
< +∞

which means that lim
n→+∞

2∑
i=1

∣∣xi(n)− x∗
i (n)

∣∣ = 0, that is

lim
n→+∞

(xi(n)− x∗
i (n)) = 0, i = 1, 2.

It means that (x1(n), x2(n)) is globally attractive. This completes the proof of Theorem 4.1.

5 Almost periodic solution

In this section, we will study the existence of a globally attractive almost periodic sequence solution of

system (1.2) with initial condition (1.3) by means of an almost periodic functional hull theory and constructing

a suitable Lyapunov function, and obtain the sufficient conditions.
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Let {δk} be any integer valued sequence such that δk → ∞ as k → ∞. According to Lemma 2.1, taking

a subsequence if necessary, we have ai(n + δk) → a∗i (n), bi(n + δk) → b∗i (n), ci(n + δk) → c∗i (n), i = 1, 2, as

k → ∞ for n ∈ Z. Then we get a hull equation of system (1.2) as follows:
x1(n+ 1) = x1(n) exp

{
a∗1(n)− b∗1(n)x1(n− σ1) + c∗1(n)

x2(n− τ1)

1 + x2(n− τ1)

}
,

x2(n+ 1) = x2(n) exp

{
a∗2(n)− b∗2(n)x2(n− σ2) + c∗2(n)

x1(n− τ2)

1 + x1(n− τ2)

}
,

(5.1)

By the almost periodic theory, we can conclude that if system (1.2) satisfies (4.6), then the hull equation (5.1)

of system (1.2) also satisfies (4.6).

By Theorem 3.4 in [18], we can easily obtain the lemma as follows.

Lemma 5.1 If each hull equation of system (1.2) has a unique strictly positive solution, then the almost

periodic difference system (1.2) has a unique strictly positive almost periodic solution.

Theorem 5.1 If the almost periodic difference system (1.2) satisfies (4.6), then the almost periodic dif-

ference system (1.2) admits a unique strictly positive almost periodic solution, which is globally attractive.

Proof. By Lemma 5.1, we only need to prove that each hull equation of system (1.1) has a unique glob-

ally attractive almost periodic sequence solution; hence we firstly prove that each hull equation of system (1.1)

has at least one strictly positive solution(the existence), and then we prove that each hull equation of system

(1.1) has a unique strictly positive solution(the uniqueness).

Now we prove the existence of a strictly positive solution of any hull equation (5.1). By the almost

periodicity of {ai(n)}, {bi(n)} and {ci(n)}, i = 1, 2, there exists an integer valued sequence {τk} with τk → ∞
as k → ∞ such that a∗i (n+ δk) → a∗i (n), b

∗
i (n+ δk) → b∗i (n), c

∗
i (n+ δk) → c∗i (n), i = 1, 2, as k → ∞ for n ∈ Z.

Suppose that X = (x1(n), x2(n)) is any solution of hull equation (5.1). By the proof of Lemma 2.2 and 2.3,

we have

mi ≤ lim inf
n→+∞

xi(n) ≤ lim sup
n→+∞

xi(n) ≤ Mi, i = 1, 2. (5.2)

And also

0 < inf
n∈Z+

xi(n) ≤ sup
n∈Z+

xi(n) < ∞, i = 1, 2.

Let ε be an arbitrary small positive number. There exists a positive integer n0 such that mi−ε ≤ xi(n) ≤ Mi+

ε, n ≥ n0, i = 1, 2. Write Xk(n) = X(n+ τk) = (x1k(n), x2k(n)), for all n ≥ n0+ τ − τk, k ∈ Z+. We claim that

there exists a sequence {yi(n)}, and a subsequence of {τk}, we still denote by {τk} such that xik(n) → yi(n),

uniformly in n on any finite subset B of Z as k → ∞, where B = {a1, a2, . . . , am}, ah ∈ Z(h = 1, 2, . . . ,m)

and m is a finite number.

In fact, for any finite subset B ⊂ Z, when k is large enough, τk + ah − τ > n0, h = 1, 2, . . . ,m. So

mi − ε ≤ xi(n+ τk) ≤ Mi + ε, i = 1, 2,

that is, {xi(n+ τk)} are uniformly bounded for large enough k.

Now, for a1 ∈ B, we can choose a subsequence {τ (1)k } of {τk} such that {xi(a1+τ
(1)
k )} uniformly converges

on Z+ for k large enough.

Similarly, for a2 ∈ B, we can choose a subsequence {τ (2)k } of {τ (1)k } such that {xi(a2 + τ
(2)
k )} uniformly

converges on Z+ for k large enough.

Repeating this procedure, for am ∈ B, we can choose a subsequence {τ (m)
k } of {τ (m−1)

k } such that {xi(am+

τ
(m)
k )} uniformly converges on Z+ for k large enough.

Now pick the sequence {τ (m)
k } which is a subsequence of {τk}, we still denote it as {τk}, then for all n ∈ B,

we have xi(n+ τk) → yi(n) uniformly in n ∈ B, as k → ∞.
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By the arbitrary of B, the conclusion is valid.

Combined with
x1k(n+ 1) = x1k(n) exp

{
a∗1(n+ τk)− b∗1(n+ τk)x1k(n− σ1) + c∗1(n+ τk)

x2k(n− τ1)

1 + x2k(n− τ1)

}
,

x2k(n+ 1) = x2k(n) exp

{
a∗2(n+ τk)− b∗2(n+ τk)x2k(n− σ2) + c∗2(n+ τk)

x1k(n− τ2)

1 + x1k(n− τ2)

}
,

gives 
y1(n+ 1) = y1(n) exp

{
a∗1(n)− b∗1(n)y1(n− σ1) + c∗1(n)

y2(n− τ1)

1 + y2(n− τ1)

}
,

y2(n+ 1) = y2(n) exp

{
a∗2(n)− b∗2(n)y2(n− σ2) + c∗2(n)

y1(n− τ2)

1 + y1(n− τ2)

}
,

We can easily see that Y (n) = (y1(n), y2(n)) is a solution of hull equation (5.1) and mi−ε ≤ yi(n) ≤ Mi+ε, i =

1, 2, for n ∈ Z. Since ε is an arbitrary small positive number, it follows that mi ≤ yi(n) ≤ Mi, i = 1, 2, for

n ∈ Z, that is

0 < inf
n∈Z

yi(n) ≤ sup
n∈Z

yi(n) < ∞, i = 1, 2.

Hence each hull equation of almost periodic difference system (1.2) has at least one strictly positive solution.

Now we prove the uniqueness of the strictly positive solution of each hull equation (5.1). Suppose that

the hull equation (5.1) has two arbitrary strictly positive solutions (x∗
1(n), x

∗
2(n)) and (y∗1(n), y

∗
2(n)). Like in

the proof of Theorem 4.1, we construct a Lyapunov functional

V ∗(n) =
2∑

i=1

βi

(
V ∗
i1(n) + V ∗

i2(n) + V ∗
i3(n)

)
, n ∈ Z, (5.3)

where

V ∗
i1(n) = | lnx∗

i (n)− ln y∗i (n)|

V ∗
i2(n) =

n−1∑
s=n−τi

ci(s+ τi)
∣∣x∗

j (s)− y∗j (s)
∣∣

+

n−1+σi∑
s=n

bi(s)

n−1∑
u=s−σi

{
Ai(u)[ai(u) +Mibi(u) +Mjci(u)]

∣∣x∗
i (u)− y∗i (u)

∣∣
+MiBi(u)ci(u)

∣∣x∗
j (u− τi)− y∗j (u− τi)

∣∣
+MiBi(u)bi(u)

∣∣x∗
i (u− σi)− y∗i (u− σi)

∣∣},
V ∗
i3(n) = Mi

n−1∑
l=n−τi

Bi(l + τi)ci(l + τi)
∣∣x∗

j (l)− y∗j (l)
∣∣ l+τi+σi∑
s=l+τi+1

bi(s)

+Mi

n−1∑
l=n−σi

Bi(l + σi)bi(l + σi)
∣∣x∗

i (l)− y∗i (l)
∣∣ l+2σi∑
s=l+σi+1

bi(s), i, j = 1, 2, i ̸= j.

Calculating the difference of V ∗ along the solution of the hull equation(5.1), like in the discussion of (4.13),

one has

∆V ∗ ≤ −η
2∑

i=1

|x∗
i (n)− y∗i (n)|, n ∈ Z. (5.4)

From (5.4), we can see that V ∗(n) is a non-increasing function on Z. Summing both sides of the above

inequalities from n to 0, we have

η
0∑

k=n

2∑
i=1

|x∗
i (k)− y∗i (k)| ≤ V ∗(0)− V ∗(n+ 1), n < 0.
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Note that V ∗(n) is bounded. Hence we have

0∑
k=−∞

2∑
i=1

|x∗
i (k)− y∗i (k)| < +∞,

which implies that

lim
n→∞

|x∗
i (n)− y∗i (n)| = 0, i = 1, 2. (5.5)

Define Q =
2∑

i=1

αiQi, where

Qi =
1

mi
+ τic

u
i + σ2

i b
u
i [A

u
i (a

u
i +Mib

u
i +Mjc

u
i ) +MiB

u
i (c

u
i + bui )]

+ σiMiB
u
i (τic

u
i + σib

u
i ), i, j = 1, 2, i ̸= j.

Let ε be an arbitrary small positive number. It follows from (5.5) that there exists a positive integer

n1 > 0 such that |x∗
i (n)− y∗i (n)| <

ε

Q
, n < −n1, i = 1, 2. Therefore, for n < −n1, i, j = 1, 2, i ̸= j,

V ∗
i1(n) ≤

1

mi
|x∗

i (n)− y∗i (n)| ≤
1

mi

ε

Q
,

V ∗
i2(n) ≤ τic

u
i

ε

Q
+ σ2

i b
u
i

[
Au

i (a
u
i +Mib

u
i +Mjc

u
i )max

p≤n
|x∗

i (p)− y∗i (p)|

+MiB
u
i c

u
i max

p≤n
|x∗

j (p)− y∗j (p)|+MiB
u
i b

u
i max

p≤n
|x∗

i (p)− y∗i (p)|
]

≤
{
τic

u
i + σ2

i b
u
i [A

u
i (a

u
i +Mib

u
i +Mjc

u
i ) +MiB

u
i (c

u
i + bui )]

} ε

Q
,

V ∗
i3(n) ≤ σiτiMic

u
i B

u
i max

p≤n
|x∗

j (p)− y∗j (p)|+ σ2
iMib

u
i B

u
i max

p≤n
|x∗

i (p)− y∗i (p)|

≤ σiMiB
u
i (τic

u
i + σib

u
i )

ε

Q
.

It follows from (5.3) and above inequalities that

V ∗(n) ≤
2∑

i=1

βiQi
ε

Q
= ε, n < −n1,

so lim
n→−∞

V ∗(n) = 0. Note that V ∗(n) is a non-increasing function on Z, and then V ∗(n) ≡ 0. that is x∗
i (n) =

y∗i (n), i = 1, 2, for all n ∈ Z, Therefore, each hull equation of system (1.2) has a unique strictly positive

solution.

In view of the above discussion, any hull equation of system (1.2) has a unique strictly positive solution.

By Lemma 2.2-2.3 and Theorems 4.1, the almost periodic difference system (1.2) has a unique strictly positive

almost periodic solution which is globally attractive. The proof is completed. 2

Let τij = 0, i = 1, 2, j = 0, 1, 2. Like in the proof of Theorem 4.1, we have the following corollary.

Corollary 5.1 Let σ1 = σ2 = τ1 = τ2 = 0. Assume that there exist positive constants β1 and β2, such that

βi min{bli,
2

Mi
− bui } − βjc

u
j > 0, i, j = 1, 2, i ̸= j,

where Mi =
1

bli
exp

{
aui + bui − 1

}
. Then the almost periodic difference system (1.1) admits a unique strictly

positive almost periodic solution, which is globally attractive.
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6 Example and numerical simulation

In this section, we give the following example to check the feasibility of our result.

Example Consider the following almost periodic discrete Lotka-Volterra mutualism model with delays:

x1(n+ 1) = x1(n) exp

{
0.025 + 0.005 sin(n)− (1.0075− 0.0025 cos(n))x1(n− 1)

+ (0.03− 0.005 cos(n))
x2(n− 2)

1 + x2(n− 2)

}
,

x2(n+ 1) = x2(n) exp

{
0.015 + 0.005 cos(n)− (1.15 + 0.05 sin(n))x2(n− 1)

+ (0.02− 0.005 sin(n))
x1(n− 2)

1 + x1(n− 2)

}
.

(6.1)
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FIGURE1: Dynamic behavior of system (6.1) with the initial conditions (x1(n), x2(n)) = (0.013, 0.018) and

(0.032, 0.025), n = 1, 2, 3 for k ∈ [1, 100], respectively.

FIGURE2: Dynamic behavior of system (6.1) with the initial conditions (x1(n), x2(n)) = (0.013, 0.018) and

(0.032, 0.025), n = 1, 2, 3 for k ∈ [500, 600], respectively.

By simple computation, we derive

M1 ≈ 0.4169, M2 ≈ 0.3659, E12 ≈ 0.4893, E21 ≈ 0.4992, F1 ≈ 0.0507, F2 ≈ 0.0365.

Then

E12 − F2 ≈ 0.4528 > 0.4, E21 − F1 ≈ 0.4485 > 0.4.

Also it is easy to see that the condition (4.6) is verified. Therefore, system (6.1) has a unique strictly positive

almost periodic solution which is globally attractive. Our numerical simulations support our results(see Figs.1

and 2).
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